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1 Introduction

The Quantum Cryptography, or more exactly, quantum key distribution, instead of
depending on the usual complexity-theoretic assumptions such as the difficulty of
factoring, depends on the uncertainty principle of quantum physics.

The Uncertainty Principle of quantum physics implies: The more precisely the
position of an object is determined, the less precisely the momentum is known in this
instant, and vice versa.1

It means that if you observe a moving object, you cannot both decide at what
speed it is moving, and the precise location which it is at. If you measure one of
them, you can’t measure the other correctly. Thus, there is an uncertainty about
one of the two properties. For example if you know that an electron is moving at a
definite speed, the uncertainty principle says that you can’t possibly know where it
is. And since you don’t know where it is, it may possibly be anywhere. There is a
small possibility that the electron may exists at any given point in the universe at
the moment you are trying to observe it.

Considering uncertainty principle of photons traveling from one node to another
and use of polarizing filters2 in both sender and receiver nodes are main elements of
quantum key distribution method to generate a secret key between two nodes. This
key can then be used with conventional cryptographic algorithms.

2 Quantum Key Distribution Protocol

1. Alice sends a random sequence of photons polarized horizontal (↔), vertical
(l), right-diagonal (↗) and left-diagonal (↖).To generate a n bits key, Alice
should send 2n bits photon pulses.

Example:Alice and Bob want to generate an 8 bits secret key. Therefore Alice
is sending 16 bits of random photon pulses.

1Heisenberg’s Uncertainty Principle
2Traveling photons vibrate in some direction. When a large group of photons vibrate in the same

direction they are polarized. Polarization filters allow only photons that are polarized in a certain
direction through; the rest are blocked.
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↗ l ↖ ↖ l ↔ ↔ ↗ ↔ ↖ ↗ l ↗ l ↖ l
2. Bob measures the photons’ polarization in a random sequence of bases, either

rectilinear (+) or diagonal (×) by a polarization detector. Bob cannot measures
in both bases at the same time since measuring in on base will destroy the
possibility of measuring another.

Example:

Bob sets his detector randomly on either diagonal or rectilinear bases.

× × × × + + × × × × + + + × + ×
If Bob sets his detector correctly he will record the correct polarization. If not,
he will record some random measurement. However Bob cannot tell if he has
recorded the correct measurement or not.

3. Bob tells Alice which bases he used for each photon he received over an insecure
channel

4. Alice tells him which bases were correct.

Example:
√ ∼ √ √ √ √ ∼ √ ∼ √ ∼ √ ∼ ∼ ∼ ∼

5. Alice and Bob keep only the data from these correctly-measured photons, dis-
carding all the rest.

Example:

↗ ↖ ↖ l ↔ ↗ ↖ l
6. This data is interpreted as a binary sequence according to the coding scheme

that has been published publicly. The data can be interpreted according the
following table scheme.

Binary Value Base
1 l ↗
0 ↔ ↖

Example:

1 0 0 1 0 1 0 1

The advantage of this method is that in an ideal machine Eve cannot eavesdrop.
Like Bob, Eve can only guess the correct polarization and her guess could only
be half of the times right. Since wrong guesses changes the polarization of the
photons, Alice and Bob will end up with different bit strings in the presence of
Eve. Enhancement to this protocol allow Alice and Bob to use their bits even
in the presence of Eve, by comparing the parity of subsets of the bits.
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3 Inadequate Transmission in Practice

The protocol described, as mentioned before works perfect for an ideal quantum
cryptography machine. However, building such machine in practice is hard. First,
detectors usually have noise thus even in absence of Eve, the data Bob receives is
different from what Alice has sent. Second, producing a pulse containing only one
photon is difficult. If instead of having one photon in each pulse, Alice produce a
coherent pulse3 or even incoherent pulse4 then there is a possibility that eve may be
able to split a pulse into two or more photons, reading one and let the others go to
Bob. This probability (P ) can be calculated as:

P = µ2/2 where, µ is the expected number of photons per pulse
and, µ ¿ 1

4 Parity Check for Eavesdropping

The procedure described in [1] for Alice and Bob to reconcile their bits takes place
over a public channel. Since Eve presumably listens to all public transmissions, Alice
and Bob must reveal as little information as possible while still ensuring that they
end up with identical keys. They can do this by agreeing upon a random permutation
of the bits in their strings (to randomize the locations of errors), and then splitting
the resulting string into blocks of size k. The constant k is chosen so that each block
is unlikely to contain more than one error. This k is usually chosen by experiment
rather than theory. Alice and Bob then compare the parity of each block.

Parity function X:

⊕X =
{

1 if X has odd number of 1’s in it’s binary form
0 otherwise

Example:
⊕(X ⊕X) = 0

If Alice and Bob find a pair of blocks with mismatched parities, they continually
bisect the block into smaller and smaller blocks, comparing parities each time, until
the error is found. To ensure that Eve learns nothing from this process, Alice and
Bob discard the last bit of each block whose parity they disclose.

After completing this process once, there will still be mismatches in those blocks
which happened to contain an even number of errors. So Alice and Bob repeat the
process several more times with increasing block sizes until they believe the total
number of errors to be low. At this point, the above strategy becomes inefficient
because Alice and Bob must discard a bit for each block they compare, and the
probability of finding an error in each block is low. So Alice and Bob switch to a

3superposition of quantum states with several photons
4statistical mixture of coherent states
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new strategy, which they again perform multiple times. Each time, they choose a
random subset of the bit positions in their complete strings, and compare parities.
The probability of disagreement if the subset strings are not identical is exactly 1/2.
If a disagreement occurs, a bisective search for the error is performed, this time
using random subsets rather than blocks. The last bit of each subset is discarded.
Eventually, all the errors will have been removed, and Alice and Bob will go through
enough parity checks without discovering any errors that they may assume their
strings are identical.

At this point, Alice and Bob posses identical strings, but those strings are not
completely private. Eve may have gained some information about them. Although
this second strategy may cause some errors in Bob’s string, if Eve uses it on only
a small number of bits, the induced errors will be lost among the errors caused by
noise in the detectors and other physical problems. During the reconciliation phase,
Eve did not gain any information, since the last bit of each parity check set was
discarded. However, some of her original information about specific bits may have
been converted to information about parity bits. For instance, if she knew the value
of a bit x in string y, and Alice and Bob revealed the parity of y and discarded x, Eve
would then know the parity of the remaining bits of y. If we say that Eve knows a
parity bit about a string if she knows the parity of a non-empty subset of that string,
then if Eve started out knowing at most k physical bits of the key, she will know at
most k parity bits of the key after reconciliation [1].

In any case, Alice and Bob share an n-bit string S, and we will suppose that Eve
knows at most k deterministic (i.e. parity or physical) bits of S. Alice and Bob wish
to compute an r-bit key K, where r < n, such that Eve’s expected information about
K is below some specified bound. To do so, they will choose a compression function
g:

g : {0, 1}n → {0, 1}r
and compute K = g(S). The question is, what kinds of functions are appropriate
for this purpose? That is, which functions, when applied to S, will yield a K about
which Eve knows almost nothing?

Definition: A class G of functions A → B is universal if for any distinct x1 and
x2 in A, the probability that g(x1) = g(x2) is at most 1

|B| when g is chosen at random
from G according to the uniform distribution.

An example of a universal class is the set of permutations of A onto itself, since
for any g in the set, the probability that g(x1) = g(x2) is zero, which is less than 1

|A| .
It is shown that if Eve knows k deterministic bits of S, and Alice and Bob choose
their compression function g at random from a universal class of hash functions
{0, 1}n → {0, 1}r where r = n− k− s for some safety parameter 0 < s < n− k, then
Eve’s expected information about K = g(S) is less than or equal to 2−s

ln2
bits. One

such hash function to generate K is for Alice and Bob to compute an additional r
random subset parities of S, this time keeping the results secret. The r results of the
parities will be the final r-bit key.
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Given this result, one might ask how Alice and Bob are to determine the value
of k, i.e. how much information has been leaked to Eve. As a conservative estimate,
they can simply assume that all transmission errors were caused by eavesdropping
(although most likely some came from detection errors). Alice and Bob can use
the beam intensity m and the bit error rate to calculate the expected fraction of S
that Eve has learned. If they are conservative in their assumptions and add several
standard deviations to their results, they will have a safe upper bound on the number
of bits leaked to Eve.

The above discussion assumes that Eve knows only deterministic bits, so another
issue is whether it might be more useful to her to obtain probabilistic information
about S instead. In other words, rather than measuring photons in the same bases
as Alice and Bob, she could pick a basis halfway in between them. This will give
her a result that matches Alice’s with probability approximately 85%, regardless of
which basis Alice uses. She will not gain any information when Bob reveals his
measurement choices, so with this strategy all of her information is probabilistic
rather than deterministic. Conceivably, this probabilistic information could be more
resistant to privacy amplification than deterministic information. However, it turns
out that this is not the case, so if Eve wishes to optimize her expected information
on the final key, she should use the same bases as Alice and Bob, obtaining only
deterministic bits.

5 New development, accomplishments and weaknesses

One of the first practical models of Quantum Cryptography Machines was made by
Charles H. Bennett, Francois Bessette and Gilles Brassard [1]. In that model, the
quantum channel itself was free air optical path of approximately 32 centimeters. The
problem with implementing their system over long distances is that fiber optic cables
ruin the polarization of the light, so the photons need to be sent through a vacuum
in a straight tube. A 200 yard quantum channel was built in 1992 using interference
rather than polarization, because interference patterns survive somewhat better in
fiber optic cables [3]. Today using fiber-optical quantum channel has increased this
path to 67km.[2] Optical fibers, in spite of their very high quality, are not perfectly
transparent. When propagating, a photon will sometimes get absorbed and thus
not reach the end of the fiber. Using repeaters is impossible since they corrupt the
key according to uncertainty principle of quantum physics. The other disadvantage of
quantum key distribution is that its key exchange rate, is still low compared to the bit
rates common in conventional telecommunication. Using Bennett’s protocol, which
has been described previously, typically exchanges a thousand bits per second.[1]
This low bit rate is the price to pay for absolute secrecy. The bits exchanged using
quantum cryptography constitute a key, which is then used to encrypt data. These
data can then be exchanged over a conventional channel at a high rate.

5



6 conclusion

Initially, quantum cryptography was thought of by everyone mostly as a work of
science-fiction because the technology required to implement it was out of reach.
The main breakthrough came when Bennett and Brassard realized that photons
were never meant to store information but to transmit it. Later on they came up
with their practical protocol. Yet building such machine was expensive. A decade
later we can see the quantum cryptography machine is made and available in mar-
ket. However, computing speed of current computers and complexity of factoring for
regular computers, do not bring up the necessity of having a quantum cryptography
machine. Today, growth in computer speed and new methods of using parallelism
in computing, (ie. DNA computing methods) are increasing the demand for more
secure channels, and quantum cryptography could be a solution for this need.
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